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Other stuff I (try to) do
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‣ Research objective: Studying dark energy through weak lensing and its 
combinations with other probes (incl. CMB) in a an era of multiple large 
astronomical surveys 

‣          Dark Energy Survey Year 3 analysis 

‣ Weak lensing + clustering anaysis 

• Consistency tests with PPD (w/ E. Baxter, paper out soon) 

‣ Cosmic shear in harmonic space 

• Cosmic shear analysis + tests (B-mode, PSF) 

• Consistency with real space (w/ C. Chang, paper out soon) 

‣ DES x CMB 

• 6x2 analysis in ΛCDM/wCDM + extensions (eg σ8(z)) 

• DES galaxy x ACT SZ-y for pressure profile 

‣ WFIRST 

‣ Forecasts for 6x2 with SO on w0waCDM and extensions 

‣ Biology (for fun) 

‣ Analysis of Morris Water Maze data for neuroscience. 
Maugard, M., Doux, C. & Bonvento, G. A new statistical method to analyze Morris Water Maze 
data using Dirichlet distribution. F1000Research 2019 8:1601 8, 1601 (2019).
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Outline

‣ Context and motivations 

‣ The blending problem 

‣ Method — variational autoencoders and simulated images 

‣ Results — deblending performances 

‣ Discussion and perspectives



Constraining dark energy with weak lensing
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‣ Weak lensing by large-scale structure imprints coherent distorsion (~1%) on galaxy shapes 

‣ Direct mapping of matter distribution (tomography) → measurement of power spectrum/2pt-functions 

‣ Powerful probe of geometry+growth over wide redshift range → constraints dark energy

Chang+18

LSST DESC 18



Ongoing surveys

‣ Dark Energy Survey (DES) 

‣ 5000 deg2 in Southern sky in griz at i<24 

‣ Upcoming Y3  analysis with 100M galaxies, stay tuned! 

‣ Hyper Suprime Cam (HSC) 

‣ 1400 deg2 in grizy, r<26 (much deeper) 

‣ Y1 analyzed in 2019-2020 

‣ Kilo Degree Survey (KiDS) 

‣ 1300 deg2 in ugri + IR bands 

‣ Recent release of KiDs-1000 with BOSS
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Next generation: LSST

‣ Vera Rubin Observatory 

‣ 8.4m wide-field telescope at Cerro Pachón 

‣ 3200 megapixel camera with ugrizy filters 

‣ LSST fast-wide-deep survey 

‣ 10 years 2022-2032 

‣ Depth r<27.5, 10G galaxies 

‣ Raw data 10Tb/night
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A preview of LSST data from HSC
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Context: LSST + Euclid + Roman
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My PhD work with Eric Aubourg and Ken Ganga at Paris-Diderot University focuses on the 
combinations of CMB and LSS probes. I have used Planck and BOSS data to measure the 
correlation between fluctuations in the Lyman-alpha forest and CMB lensing (arXiv:1607.03625) 
and to perform a joint analysis to constrain cosmological models (arXiv:1706.04583). I am 
interested in working on synergies between current and future surveys — joint statistical analyses, 
systematics mitigation through cross-correlations and combined raw data treatment (eg with 
images from ground vs space experiments) and search for new effects visible through cross-
correlations.


WFIRST Euclid LSST
Start 2024 2021 2022

Duration 2 out of 6 years 5-6 years 10 years

Area 2300 sq. deg. 15000 sq. deg. 18000 sq. deg.

Footprint South (within LSST) Excludes galactic and 
elliptical planes South

Passes ~5 1 ~500

Bands 4 near-infrared 1 broad optical, 4 NIR 6 optical (ugrizy)

Depth 27 in NIR 24.5 in optical and NIR 25 to 28 in optical

Seeing 0.12’’ 0.13’’ 0.4’’

Spectra grism grism none

‣ Space-based weak lensing surveys 

‣ ESA’s Euclid mission 

‣ NASA’s Nancy Grace Roman telescope 

‣ Complementary characteristics 

‣ Resolution + IR bands 

‣ Catalog-level combination → eg better photo-z 

‣ Pixel-level joint processing → cross-calibration, detection 
and… deblending!

Jain+15, Rhodes+18



Space+ground observations
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DES data (image from Peter Melchior)



Space+ground observations
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CLASH WFC3/IR data (image from Peter Melchior)



The deblending problem
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‣ Why is it an issue? 

‣ ~50% galaxies are blended at LSST’s depth (58% for HSC, 
see Bosch+17) 

‣ Discarding them decreases statistical power and induces 
selection biases 

‣ Impacts shape and color/redshift measurement, thus all 
weak lensing science! 

‣ Why is it difficult? 

‣ Modelling morphologies beyond fitting profiles (Sérsic, de 
Vaucouleurs, exponential, etc) 

‣ It’s impossible… without making assumptions (sic Robert 
Lupton) 

‣ Strongly tied to detection algorithm (iterative procedure), 
ie unrecognised blends

Dawson+15

HSTSubaru



The deblending problem
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‣ Existing deblenders 

‣ SExtractor (Bertin+96) : segmentation via thresholding 

‣ SDSS deblender (Lupton, in prep) : symmetry constraint, only one band 

‣ Inpainting techniques (Zhang+15, Connor+17) 

‣ MuSCADeT (Joseph+16) : source separation with sparse spatial constraint 

‣ Multi-Object Fitting (Drlica-Wagner+18) : friends-of-friends + bulge/disk model 

‣ SCARLET (Melchior,Moolekamp+18) > integration in LSST pipeline
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Figure 1: Left: False-color image of grizy coadd images Y from the HSC UltraDeep COSMOS data release, shown with an arcsinh stretch. The scene spans 25⇥25
arcsec2. Object detections and ellipse fits are performed by SExtractor on the detection image (sum of the five coadds). Center: scarlet model AS of the scene
with single-component sources for each detection. Right: The residual Y�AS reveals the presence of additional sources or color variations within detected sources.

modeled because the e↵ect depends on the amount of absorbing
material and the intensity of the background radiation.

The assumptions above appear to lend themselves to a para-
metric modeling framework, where one assumes to know the
shapes of the components and potentially their intrinsic spec-
trum, exploiting quite tight relations between colors and mor-
phologies exhibited by galaxies in the late universe (e.g. Con-
selice, 1997; Ball et al., 2008). While drastically reducing the
number of optimization parameters, we are critical of this ap-
proach for two reasons: First, in the translation of an intrinsic,
restframe spectrum to the observed broadband colors one needs
to take the galaxy’s redshift into account, which is equivalent
to estimating a photometric redshift as part of the deblending
process. If the redshifting prescription is incorrect, e.g. be-
cause of a limited library of spectra or the evolution of those
spectra with redshift, it would a↵ect the properties of the de-
blended components—not only their recovered spectra but also
their shapes. Second, at the stage in the analysis pipelines of
large astronomical surveys where we envision the deblender
to operate, it will not necessarily be established what kind of
sources are in the scene; in other words, a suitable parameteri-
zation is probably not known. This is most evident when look-
ing at the star-galaxy distinction: for stars, three parameters are
su�cient (two centroid coordinates and one amplitude), while
even simple galaxy models need at least one more parameter
(the size). Model-fitting under those conditions can be done by
transdimensional sampling (e.g. Green, 1995), but the compu-
tational costs are likely too high for large-volume data sets.

Because of these concerns, we seek to characterize the scenes
without making questionable astrophysical assumptions, which
means describing colors in the observed frame and morpholo-
gies in the free-form space of image pixels.

2.1. Non-negative Matrix Factorization
We assume that an astronomical scene Y that we seek to

analyze is organized in the form of a multi-band image cube of
aligned images in B bands, each of which is suitably flattened

to have a total number of N pixels. Our previous assumptions
give rise to a multi-band model M as a sum of a finite number
of components K,

M =
KX

k=1

A>k ⇥ Sk = AS, (1)

where Ak 2 RB is the amplitude of component k across all
bands, i.e. its spectral energy distribution (SED), and Sk 2 RN

is the spatial shape of that component. By arranging the Ak as
columns of A 2 RB⇥K and Sk as the rows of S 2 RK⇥N , we have
a model M that is given by the product of two matrix factors.

With a homoscedastic Gaussian error model, the likelihood
function is

f (A,S) =
1
2
kY � ASk22 (2)

where k.k2 denotes the element-wise L2 (Frobenius) norm.5 In
its simplest form, the Non-negative Matrix Factorization (NMF
Paatero & Tapper, 1994) then amounts to fitting A and S such
that they minimize f and obey the non-negativity constraint,
which is given by the indicator function of the set of non-negative
matrix elements:

g+(X) =

8>><
>>:

0 if Xmn � 0 8m, n
1 else.

(3)

In other words, one seeks to minimize f (A,S)+ g+(A)+ g+(S).
The classical way of solving this NMF problem is known as
“multiplicative updates” (Lee & Seung, 2001), which su↵ers
from poor convergence if the constraints strongly work against
the minimum of the objective function. Moreover, in its sim-
plest form the NMF is hampered by a degeneracy that stems

5The objective function in Equation 2 is insu�cient for dealing with real-
istic multi-band data, which generally exhibit correlated noise and correlated
signals, the former from warping the images to rectify any astrometric distor-
tion, the latter because of the blurring from the point spread function. We will
work out in Section 2.4 and Section 2.5 how to deal with both e↵ects.

3

=
k=1

K

∑Ak
⊤Sk

SED

Profile - symmetry and monotonicity 
constraints on Ak 

- bS-DMM constrained minimization 

- uses all bands 

- λ-dep PSF + correlated noise



This work

‣ Goals 

1. Minimum assumption on galaxy morphology 

2. Fast enough to deal with LSST data (15Tb/night) 

3. Incorporate LSST with Euclid/WFIRST data 

‣ This work with Bastien Arcelin (grad student at APC, Paris) 

‣ We developed and tested a new method based on 
two probabilistic CNNs sharing weights 

• Network 1 (VAE) learns a generative model  D1  

• Network 2 (deblender) deblends with E2 under constraints 

• Multi-bands/instru used as image channels (like RGB) 

• Super fast once trained 

‣ Results 

✓ Training/testing on simulated images with fixed PSF 

✓ Accuracy measured by shear/flux recovery 

✓ Initial tests on real data
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#desc-sports

E1 D1

Bastien Arcelin - 05/02/2020 LSST France - February 2020

   Two neural networks:

• VAE (Kingma+2014) : 


- Learn a latent variable (z)  
generative model p(X|z)


- Approximate the posterior 
p(z|X) with an encoder


• Deblender: 

- Use fixed generative 

model from VAE

- Train a new network that  

learns to approximate 
p(zcenter|Xblended)


- ~ Perform deblending in 
latent space
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CNNs and generative models

‣ Convolutional neural networks 

‣ learn image filters to find pattern/recover transformation 

‣ good at classification, segmentation, tagging… and 

‣ Generative/bayesian models 

‣ Latent variable models, ie linking data X to Z~N(0,𝟙)  

• Generative Adversarial Networks (GAN, Goodfellow+15) 

• Variational Auto Encoders (VAE, Kingma+14)
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mlnotebook.github.io

Real images (ImageNet) Generated images

07/12/2019 JHQ_PRGHOV_GLaJ_2 (1).VYJ

ÀOH:///UVHUV/cGRX[/DRZQORaGV/JHQ_PRGHOV_GLaJ_2 (1).VYJ 1/1

http://mlnotebook.github.io


Variational autoencoder (VAE)

‣ Learn a bayesian model between data X and latent variables Z~N(0,𝟙) 

- DECODER network learns the generative model pθ(x|z) 

- ENCODER network approximates the posterior with qɸ(z|x)≃ pθ(z|x) 

- Trained by maximizing marginal distribution of X, log p(X), lower bound (ELBO, Kingma+14) 

‣ Architecture ENCODER = CNN + dense layers, DECODER in mirror
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log p(x) � �DKL (q�(z |x)||N (0, 1)) + Eq�(z |x) [log p✓(x |z)]
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reconstruction X vs X’~regularization

latent spaceINPUT X OUTPUT X’

DECODER

pθ(x|z)

ENCODER

qɸ(z|x) ≃ pθ(z|x)

Z~N(0,𝟙)



2-step method
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1. Generative model of isolated galaxy images with a variational auto-encoder 

‣ VAE encodes noisy images of isolated and ~centred galaxies in unsupervised latent space 

2. Deblender for central galaxy with fixed generative model 

‣ Encoder learns to approximate P(zcenter|Xblended) → output X’ = DECODER(zcenter) 

‣ Deblending is constrained by prior in latent space 

‣ Validated by reproduction of shapes and fluxes

E1 D1
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VAE/deblender architecture
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‣ Data INPUT = noisy isolated/blended images (6 or 10 channels) 
OUTPUT = isolated noiseless images (6 or 10 channels)

‣ Architecture CNN β-VAE with 32 latent variables 
- β=10-2 to improve reconstruction 

- PReLU activations (~lossless), >5M parameters 

- posterior qɸ(z|x)=N(μ(x),σ(x)) 

- likelihood pθ(x|z)=“continuous Bernouilli” with tuned normalisation



Training samples
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‣ Catalog Parametric chromatic GalSim images from COSMOS i<25.2 
- 100k/10k for training/testing

‣ Bands/exposures - 6 LSST bands ugrizy, 824 15s exposures (~10 years) in total (uneven) 
- Euclid VIS + 3 NIR, 4 450s exposures

‣ PSF Fixed PSF, Kolmogorov 0.65’’ for LSST, Moffat 0.18’’ (0.22’’) for Euclid

‣ Noise Poisson noise with fiducial sky background values

‣ Decentering 1- perfectly centred 
2- uniformly decentered by half an LSST pixel 

3- centered on brightest peak in r (simplistic photutils peak finder)



Training samples - isolated galaxies
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‣ Comparison input/output ellipticities 

‣ Analysis of reconstruction errors as function of S/N (or mag, distance, etc)

Results : validating generative model
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Training samples - blended galaxies
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‣ Generation of artificial blends 

‣ 25% of [1,2,3,4] galaxies 

‣ Brightest galaxy centred (3 decentering methods) 

‣ Exclusion area of PSF θfwhm/2=0.3’’ between centers 

‣ Total blendedness metrics Btot (from Scarlet)



Results - deblender
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Deblender performances
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‣ Analysis of ellipticity errors 

‣ Median errors within ±0.01, stable across 10<S/
N<3000, 0<Btot<1 

‣ 30% smaller error distribution with LSST+Euclid 

‣ Ellipticity biases of 5.6%(1.6%) for LSST(+Euclid) 

‣ Shear multiplicative bias of 4-6% on sample



Deblender performances
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‣ Analysis of magnitude errors 

‣ Median errors within ±0.05, stable across 10<S/
N<3000, 0<Btot<1 

‣ 20% smaller error distribution with LSST+Euclid



Impact of decentering
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a) Error in shear b) Error in magnitude

Figure 7. Comparison of results for LSST deblenders trained with three di�erent centering configurations: the first one is perfectly centered on the stamp, the
second one has its center in a square of size 0.200 around the stamp center, and the third one has its center computed by a simple peak detection algorithm (from
the photutils library) on blended galaxies images (see section 2.1.3). The poor performances of the peak finder hamper those of the deblender network,
which, in contrast, seems robust to decentering only due to pixelisation.

Figure 8. Multiplicative shear bias (averaged over the two shear compo-
nents) between target and deblenders’ output images, as a function of SNR
in the four tested configurations: LSST and LSST+Euclid filters on perfectly
centered target galaxies and two decentering configurations (simulating pix-
elisation and a simple peak finder algorithm, see section 2.1.3).

the decentered configurations, we measure biases of �0.081 and598

�0.084.599

This confirms that the deblender network can exploit color600

information from the six LSST bands to perform deblending to a601

reasonable accuracy. In addition, it can benefit from additional infor-602

mation provided by Euclid filters to improve shape reconstruction.603

Finally, we have assessed the robustness of our method to decenter-604

ing, whether it is due to pixelisation or to the accuracy of the peak605

detection algorithm. These results thus emphasize the importance of606

an accurate detection pipeline for our method (as for any deblending607

technique) to work properly. In particular, the second case, which608

is strongly impacted by unrecognised blends, provides conservative609

performance tests. Our measurements might reveal the poor quality610

of the detection algorithm in case of blends rather than the actual611

performance of our deblender, as discussed further in section 5.1.612

5 DISCUSSION613

In this section, we further discuss some of our assumptions, in par-614

ticular decentering, and their potential impacts on our results. We615

provide some insight into assets and potential caveats of the current616

implementation and propose avenues to solve some of our limita-617

tions –some of which will be challenging for any machine-learning-618

MNRAS 000, 1–13 (2019)

Bastien Arcelin - 23/04/2020 LSST DESC - Blending WG6

Decentering 
  

In reality, it is impossible to have a perfectly centered galaxy 
on the stamp: 2 tests configurations

First configuration:  
Pixelisation decentering

Second configuration:  
Detection algorithm decentering

-1 0 1

pixel detection

1. Perfectly centered on post stamp 

2. (pixel) Uniform decentering within a pixel around center 

3. (detection) Center detected with simple peak finder (in r only)

‣ Median errors still low 

‣ Spread of error increase 

‣ Shear biases degrade to 8% 

‣ Biases (<1σ) only at very 
low S/N or Btot>0.45
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Figure B1. Sample of images processed with the LSST+Euclid deblender networks, before and after applying transfer learning. The first column shows the
noisy input image and the fourth one the target galaxy image. As mentioned in section 5.2 correlated noise and residuals of images processing appear in
target images. The middle columns show the output of the network when only trained on simulated images (second from left) and after retraining on a sample
including 20% of real images (third from left).

MNRAS 000, 1–12 (2019)

What about real data?

‣ Challenges to build a training sample 

‣ Clean sample of isolated galaxies? 

‣ Selection bias 

‣ Transfer learning test 

‣ COSMOS i<25.2 real images r<26 with added noise 

‣ Clear blend and postprocessing + correlated noise 

‣ Shear bias divided by 2 with TL
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Deblending galaxies with Variational Autoencoders 15

Figure B1. Sample of images processed with the LSST+Euclid deblender networks, before and after applying transfer learning. The first column shows the
noisy input image and the fourth one the target galaxy image. As mentioned in section 5.2 correlated noise and residuals of images processing appear in
target images. The middle columns show the output of the network when only trained on simulated images (second from left) and after retraining on a sample
including 20% of real images (third from left).

MNRAS 000, 1–13 (2019)



Summary

‣ Deep-learning model with VAE/deblender architecture 

‣ Data-driven model with CNNS minimal assumptions on morpho 

‣ Detection/deblending: need no info about neighbours but center → iterative 

‣ Extensive testing of deblender performances on simulated images 

‣ Median errors on |e|<0.01 to 0.05, on mag<0.05 to 0.20 

‣ Ellipticity bias ~5%, shear bias 4-6% before calibration 

‣ Performances tied to detection/centering algorithm 

‣ Multi-band/multi-instrument approach for LSST+Euclid 

‣ Significant improvement (20-30%) with Euclid VIS+NIR 

‣ Training with real images 

‣ Encouraging results from transfer learning!
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What’s next?

‣ Real data 

‣ Simulated objects injection with HSC data
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‣ Go fully bayesian! 

‣ Bayesian neural networks to directly obtain posteriors on 
shape/flux parameters, ie provide P(ecentral,z|Iblended)



THANKS FOR LISTENING! :^)



EXTRA SLIDES



Variational autoencoder (VAE)
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Variational autoencoder (VAE)
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INPUT X
Z~N(0,𝟙)

ENCODER DECODER

latent 

variables

OUTPUT X’

qɸ(z|x) ≃ pθ(z|x) pθ(x|z)

[likelihood][posterior]

[prior]



Variational autoencoder (VAE)
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INPUT X OUTPUT X’

DECODER

pθ(x|z)

[likelihood]

ENCODER

qɸ(z|x) ≃ pθ(z|x)

[posterior]

μ(X)

σ(X)

SAMPLING 
Z~N(μ(X),σ(X)𝟙)

Z~N(0,𝟙)
[prior]



Shear bias
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6 Arcelin et al.
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Figure 2. Architectures of the VAE and the deblender. The weights of the VAE’s trained decoder are loaded and fixed in the deblender network before training.

Figure 3. Corner plot of the five first dimensions of the latent space of a VAE
trained on images composed of the LSST ugrizy filters. All components
show similar trends.

but here we minimize over the mapper weights �0. Here xin is the412

input noisy and blended image and xtarget is the noiseless target413

image of the central galaxy. Note that we tried to initialize those414

weights either randomly or from the trained encoder and obtained415

the same results.416

4 RESULTS417

4.1 Reconstruction metrics418

Weak lensing is our main focus in this work and we thus assess419

the performance of our method by measuring statistical errors in420

shape parameters (ellipticities) and magnitudes, which are primor-421

dial information to obtain photometric redshifts. We compute those422

quantities on images from the test samples (described in section 2),423

both on the target noiseless images, viewed as the ground truth,424

and on the output of the prior model and the deblender networks425

(both denormalised). We present the measured errors as functions426

of other relevant quantities (such as signal-to-noise ratio and blend-427

edness metrics) to gain intuition about the assets and limitations of428

our method. In particular, we measure:429

(i) the PSF-corrected ellipticity defined as the reduced shear430

estimator |e| ⌘ (a � b)/(a + b), where a and b are the semi-431

major and semi-minor radii. The measurement is performed in the432

LSST r-band from PSF-convolved images using the HSM module433

in GalSim and the EstimateShear() function with the Kaiser-434

Squires-Broadhurst method (KSB, Kaiser et al. 1995), to which we435

provide the fixed PSF used to generate the images (see section 2).436

(ii) the magnitude in the r-band, computed from the total flux,437

itself obtained by simply summing the number of photons from438

every pixel. We have verified that we obtain very similar results in439

all bands.440

In order to demonstrate and quantify the benefits of using multi-441

ple bands and multiple instruments, we repeat the training of both442

networks and the analysis for images consisting of443

(i) the six LSST bandpass filters (ugrizy, 6 bands), and444

(ii) all LSST and Euclid bandpass filters together (10 bands).445

Finally, we also evaluate the robustness of our networks to
signal-to-noise ratio (SNR) as it is expected to have a significant

MNRAS 000, 1–13 (2019)



Probabilistic output

Cyrille Doux  |  Deblending with VAEs | LIneA webinar | Oct 15th 2020 36



Cyrille Doux  |  Deblending with VAEs | LIneA webinar | Oct 15th 2020 37



Cyrille Doux  |  Deblending with VAEs | LIneA webinar | Oct 15th 2020 38


